Cache Mapping and Input/Output Organisation

Presented by: Mr Akshay Kumar
Associate Professor, SOCIS, IGNOU
For
MCA/BCA /PGDCA Students of IGNOU

Reference Material of IGNOU

Block 2 of MCS-012

Outline of Presentation

- Cache Memory
- I/O Techniques
- I/O Devices Magnetic Disk and CD

The Memory Hierarchy

- Big Memory is cheap but slow
- Fast Memory expensive, therefore, small
- Increase performance by having "hierarchy"
 - CPU Registers
 - Internal or Main memory
 - Cache memory
 - Main Memory
 - I/O Interfaces
 - Devices

Mapping

- Mapping of Main Memory to Cache.
 - Where can CPU find a block of Main Memory in Cache?
 - Three basic schemes-
 - Direct Mapping
 - Associative Mapping
 - Set-Associative mapping

Cache Memory

- Main Memory Address
 - Dividing main memory into Blocks
- Cache LINES /Slots
 - Cache Address
- Where a memory Block of Data Can be found in Cache?
 - Determined by TAG no

An Example Main Memory Stze – 256 Byte

- Byte addressable Memory
- Memory word = 1 Byte
 - $256 \text{ Words} = 2^8$
 - The Main Memory Address is 8 bit long.
- Cache of size 32 Bytes
- A Cache Line is of 2 bytes
 - The cache has 16 (24) lines of 2 bytes each
 - Memory Block size = 2 bytes

Tag	Li#	Word
	0000	Byte 0
		Byte 1
	0001	Byte 0
		Byte 1
	1111	Byte 0
美观 等		Byte 1

and wally	de l'annual de la company
Bl#	Word
0000	0 Byte
000	1 Byte
0000	0 Byte
001	1 Byte
0000	0 Byte
010	1 Byte
1111 111	0 Byte
	1 Byte

Modulo function with 4

Decimal	Quotient	Remainder	Binary	Quotient	Remainder
0	0	0	0000	00	00
1	0	1	0001	00	01
2	0	2	0010	00	10
3	0	3	0011	00	11
4	1	0	0100	01	00
5	1	1	0101	01	01
6	1	2	0110	01	10
7	1	3	0111	01	11

Modulo function with 4

Decimal	Quotient	Remainder	Binary	Quotient	Remainder
8	2	0	1000	10	00
9	2	1	1001	10	01
10	2	2	1010	10	10
11	2	3	1011	10	11
12	3	0	1100	11	00
13	3	1	1101	11	01
14	3	2	1110	11	10
15	3	3	1111	11	11

Direct Mapping

- Each block of main memory can be placed ONLY in ONE cache line
- Size of main memory address: 8 bits
 - Least Significant 1 bit identifies unique word (byte in this case) in a memory block of 2 words
 - Most Significant 7 bits specify memory blocks

是特别或新			STATE OF STATE OF
Memory Block Address			Word
111	1	111	0
	Bl#	Word	TET STATES
	000	0Byte 0	
	0000	1Byte 1	
	000	0Byte 0	
	0001	1Byte 1	
	000	0Byte 0	
	0010	1Byte 1	
			(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)
	111	0 Byte	3
	1111	1Byte 1	10

Direct Mapping Address Structure

- Cache Address Cache size 32 Bytes
 - 1 bit word identifier (2 byte) in a cache line
 - 4 bit line number or index (o to 15)

dona francisco	Memory B	lock Address	Word
	111	1111	0
SAN TOTAL STANDARD	Tag	Line no	

Tag	Li#	Word
	0000	Byte 0
		Byte 1
	0001	Byte 0
		Byte 1
111	1111	Byte 0
		Byte 1

Bl#	Word
000	Byte o
0000	Byte 1
000	Byte o
0001	Byte 1
000	Byte o
0010	Byte 1
	•••
111	Byte o
1111	Byte 1

Cache line/ Index	Main Memory blocks held
0000	0, 16, 32, 48, 64, 80, 96, 112
0001	1,17, 33, 49, 65, 81, 97, 113
1111	15, 31, 47, 63, 79, 95, 111, 127

Memory B	lock Address	Word
001	0000	1
Tag	Line no	

Example

	Tag	Li#	Word
	001	0000	Byte 0
			Byte 1
	000	0001	Byte 0
			Byte 1
	111	1111	Byte 0
No. of the last			Byte 1

Word	
Byte o	
Byte 1	
Byte o	
Byte 1	
Byte o	
Byte 1	
Byteo	
Byteı	
Byte o	
Byte 1	
	Byte o Byte 1 Byte o

Why Direct Mapping?

- It is very Simple
- It is very Inexpensive
- One major problem
 - If a program accesses two blocks that map to the same line repeatedly, then every access will result in cache miss.

Associative Mapping

- A main memory block can load into any line of cache
- Tag uniquely identifies block of memory
- Cache need to be examined simultaneously, therefore, Cache searching gets expensive on hardware

Memory Block Address	Word
1111111	0
Tag	

Tag	Word
1111111	Byte o
	Byte 1
0000000	Byte o
	Byte 1
	•••
0101010	Byte o
	Byte 1

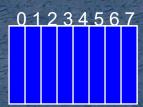
o8 February 2009

Bl#	Word	
000	Byte o	
	Byte 1	
000 0001	Byte o	
	Byte 1	
000 0010	Byte o	
	Byte 1	
111 1111	Byte o	
	Byte 1	

Two-way set Associative Mapping

- Divides the Cache into a number of SETs
- If each of these sets contains a fixed number of lines suppose each set contains TWO LINEs then it is called TWO-WAY Set Associative Mapping
- A block of main memory can be mapped to any LINE of only ONE SET.

Memory Block Address		Word
1111	111	0
Tag	Set No	


Tag	W	S#	Tag	W	Bl#	Word
	Во	000	0000	Во	0000	Byte o
	B1			Bı	000	Byte 1
0000	Во	001		Во	0000	Byte o
	B ₁		all take	B ₁	001	Byte 1
			A = A =		0011	Byte o
	•••				111	Byte 1
0011	Во	111	1111	Во	•••	
(注)	B ₁		a di	B1		
					1111	Byte o
	ti di		til cil	1	111	Byte 1

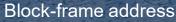
The Three Mapping Schemes

- Assumption:
 - Main Memory SIZE 32 Blocks
 - Cache Size 8 Blocks

Fully associative

Block no.

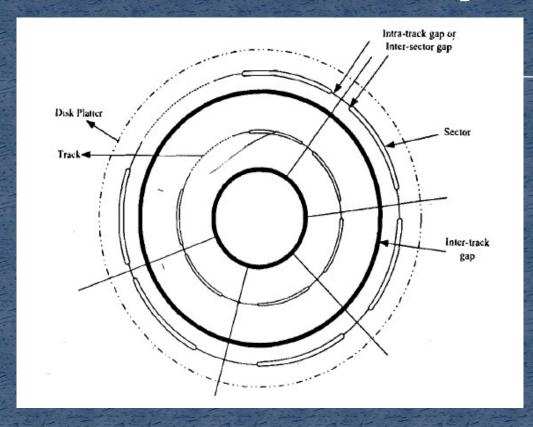
Direct mapping



2 way Set
associative
mapping

no.

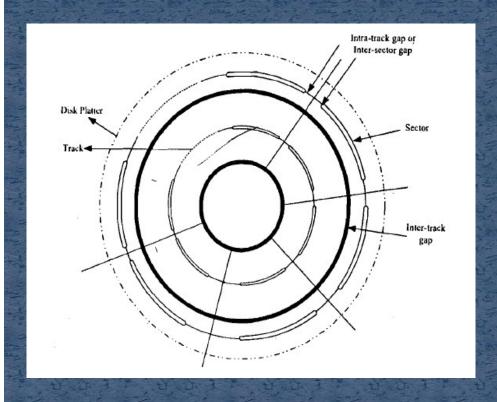
Set Set Set Set 0 1 2 3

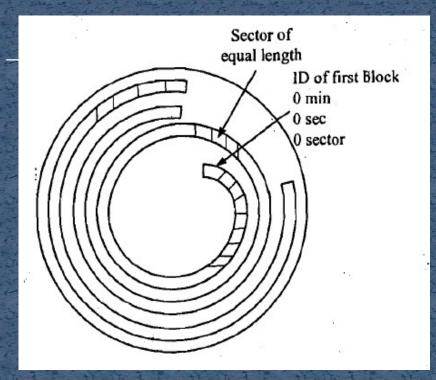


Block no.

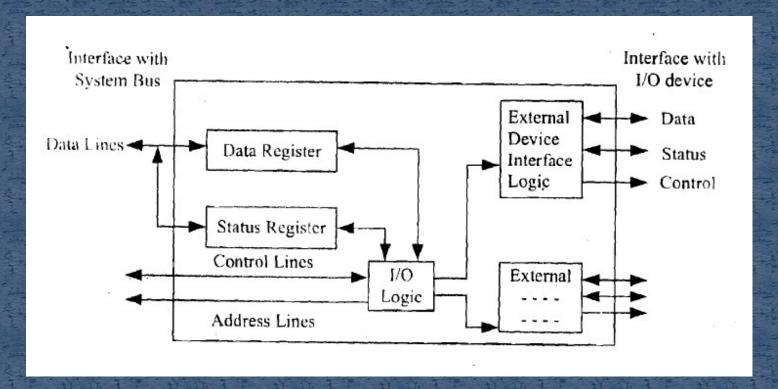
Secodary Storage Organisation

Hard Disk Basic Layout




- Disk Access Time
 - Seek Time
 - Latency Time

Magnetic Disks


- Direct Access Vs Random Access
- Seek Time is defined in disks
- Latency time calculation
 - Suppose a disk rotates at 10000 rpm
 - Time of one rotation = 1/10000 minutes
 - = 60/12000 seconds = 6/1000 seconds = 6 milli-seconds
 - On an average half of disk rotation, so latency time
 - =1/2*6 = 3 milli-seconds

Hard Disk vs CD ROM Layout

An Interface for Input/ Output

I/O Techniques

Programmed I/O	Interrupt Driven I/O	DMA
CPU issues Read Command to I/O interface	CPU issues Read Command to I/O interface	CPU issues a Read Command for Block of data to DMA controller
CPU checks the status of I/O Device Repeatedly	CPU is Interrupted by I/O interface once task performed	On Completion DMA controller interrupts and inform CPU
CPU reads Word from I/O Interface and Writes it in memory	CPU reads Word from I/O Interface and Writes it in memory	
CPU checks for Completion	CPU checks for Completion	

Role of I/O Interface

- Control and timing signals with CPU and External Devices'
 - CPU requests data, checks status of device and responds, Gets the data and communicate to CPU
- Communicates with CPU
- Communicates with I/O device
- Data Buffering
- Error Control

Activites to be Pefromed

- Study the Block 2
- Solve questions of CYPs in the Block
- Solve questions given in assignments and previous year question papers
- Discuss with us, if there is any problem.